The Project for Human Resource Development Scholarship by Japanese Grant Aid (JDS)

Basic Mathematics Aptitude Test
 2020

Solution

Note:

- You have 60 minutes to complete.
-No calculators are allowed.
- Show all your work and write your answers in the designated space.
- Part I and Part II are 'Basic Math,' and Part III and Part IV are 'Applied Math.'

Name:
(Please show all your work here and write your answers in the designated space)
[PART I] Calculate the followings.

1. $(-2) \times(2-3) \times(-1)+3$
$=(-2)+3=1$
Answer : 1
2. $\frac{1}{3} \times\left(\frac{1}{5} \div \frac{1}{10}-\frac{2}{3}\right)-\frac{1}{3}$
$=\frac{1}{3} \times\left(\frac{1}{5} \times \frac{10}{1}-\frac{2}{3}\right)-\frac{1}{3}=\frac{1}{3} \times\left(2-\frac{2}{3}\right)-\frac{1}{3}=\frac{1}{3} \times \frac{4}{3}-\frac{1}{3}=\frac{4}{9}-\frac{1}{3}=\frac{1}{9}$

3. $(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$
$=5-3=2$
Answer : 2
4. $\left(\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{4}\right)^{0.5}\right)^{-4} \div 8^{2}$
$=\left(2^{-2} \times 2^{-1}\right)^{-4} \div 2^{6}=2^{12} \times 2^{-6}=2^{6}=64$
(Please show all your work here and write your answers in the designated space)
[PART II] Answer the following questions.
5. Solve the following equation for y .

$$
2 y=\frac{3 y-2}{2}
$$

$$
4 y=3 y-2 \rightarrow y=-2
$$

$$
\text { Answer : } \quad y=-2
$$

2. Solve the following simultaneous equations for a and b.

$$
\begin{aligned}
& a+3 b=5 \\
& -2 a+3 b=8
\end{aligned}
$$

$\mathrm{a}=-1, \mathrm{~b}=2$
Answer : $\quad \mathrm{a}=-1, \mathrm{~b}=2$
3. Find the region of x satisfying the following inequality.

$$
\begin{aligned}
|x-1| & <3 \\
-2 & <x<4
\end{aligned}
$$

$$
\text { Answer : } \quad-2<x<4
$$

4. Consider the straight line in the (x, y)-plane that passes through the point $(0, \mathrm{a})$. Assume that the slope is -2 and the x-intercept is $(2,0)$. Find the value of a.

The slope is -2 , and the y-intercept is a. Thus, we can write $y=-2 x+a$. Since the $x-$ intercept is 2 , we have $\mathrm{a}=4$.
(Please show all your work here and write your answers in the designated space)
[PART III] Answer the following questions:

1. Find the region of x satisfying the following inequality.

$$
2 x^{2}<5 x-3
$$

$(2 x-3)(x-1)<0 \rightarrow 1<x<\frac{3}{2}$

$$
\text { Answer : } \quad 1<x<\frac{3}{2}
$$

2. Solve the following equation for x .
$2 \log _{10}(x)=\log _{10}(x+6)$
$x^{2}-x-6=(x+2)(x-3)=0 \quad \rightarrow x=-2,3$
Since $x>0$, we have $x=3$
Answer : $\quad x=3$
3. Find the positive integer x satisfying the following equality.

$$
\sum_{\mathrm{k}=1}^{\mathrm{x}} \mathrm{k}=55
$$

$\sum_{\mathrm{k}=1}^{\mathrm{x}} \mathrm{k}=\frac{\mathrm{x}(\mathrm{x}+1)}{2}=55 \rightarrow \mathrm{x}(\mathrm{x}+1)=110 \rightarrow \mathrm{x}^{2}+\mathrm{x}-110=(\mathrm{x}-10)(\mathrm{x}+11)=0$
$\rightarrow \mathrm{x}=10,-11$
Answer : 10
4. Consider the following five values,

$$
\{-2,9,20,3,15\}
$$

Suppose that the average of these five values is $3^{4 x}$. Find the value of x.
$\frac{-2+9+20+3+15}{5}=9=3^{2}=3^{4 x} \rightarrow 4 x=2$

$$
\text { Answer : } \quad x=\frac{1}{2}
$$

(Please show all your work here and write your answers in the designated space)
[PART IV] Answer the following questions:

1. Determine the first-order derivative of the following. Note that e is a mathematical constant which is the base of the natural logarithm.
$y=x^{3} e^{x}-5$
$y^{\prime}=3 x^{2} e^{x}+x^{3} e^{x}$

$$
\text { Answer : } \quad \mathrm{y}^{\prime}=3 \mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}+\mathrm{x}^{3} \mathrm{e}^{\mathrm{x}}
$$

2. Solve the following equation for x . Assume $\mathrm{x}>0$. Note that e is a mathematical constant which is the base of the natural logarithm.

$$
\begin{gathered}
\int_{1}^{3 x} \frac{1}{z} d z=\log _{e} 5 \\
\int_{1}^{3 x} \frac{1}{z} d z=\log _{e}(3 x)-\log _{e}(1)=\log _{e}(3 x)=\log _{e}(5) . \text { Thus, } 3 x=5 \rightarrow x=5 / 3
\end{gathered}
$$

$$
\text { Answer : } \quad x=\frac{5}{3}
$$

3. Let $A=\left[\begin{array}{cc}a & -1 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]$. Assume that the determinant of A is 1 . Find $A^{-1} B$.

$$
\begin{aligned}
& \operatorname{det}(\mathrm{A})=\mathrm{a}+2=1 \rightarrow \mathrm{a}=-1 \\
& \mathrm{~A}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right] \rightarrow \mathrm{A}^{-1} \mathrm{~B}=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
4 & -1
\end{array}\right] \\
& \text { Answer : }
\end{aligned} \begin{array}{cc}
{\left[\begin{array}{cc}
-2 & 1 \\
4 & -1
\end{array}\right]}
\end{array}
$$

4. Consider the profit function, $\pi(q)=(100-2 q) q-\frac{1}{2} q^{2}$, where q is the output, and $\pi(q)$ is the profit with output q as given. Find the optimal level of output maximizing the profit.
$\pi^{\prime}(q)=100-4 q-q$. The first-order condition is: $100-5 q=0 \rightarrow$ $\mathrm{q}=20$.

Answer : $\quad \mathrm{q}=20$

[PART V] Fill in the following blanks with correct answers.

1. Find the first derivative of the following.

$$
f(x)=\sin (3-x)
$$

Solution

$f^{\prime}(x)=\cos (3-x) \times(-1)=-\cos (3-x)$.

$$
\text { Answer : } \quad-\cos (3-x)
$$

2. Consider a sequence $\left\{\mathrm{a}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ and its series
$S_{n}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=(\mathrm{n}+1)^{2}$
for $n=1,2,3, \cdots$. Find the value of a_{10}.

Solution

For $\mathrm{k}=2,3,4, \cdots$, we have that $\mathrm{a}_{\mathrm{k}}=\mathrm{S}_{\mathrm{k}}-\mathrm{S}_{\mathrm{k}-1}=(\mathrm{k}+1)^{2}-\mathrm{k}^{2}=2 \mathrm{k}+1$. For $\mathrm{k}=1$, $\mathrm{a}_{1}=\mathrm{S}_{1}=4$. Thus, $\mathrm{a}_{\mathrm{k}}=2 \mathrm{k}+1$ and $\mathrm{a}_{10}=21$.
3. Consider two vectors, $\vec{a}=(1,1)$ and $\vec{b}=(-1,0)$. Let θ denote the angle between \vec{a} and \vec{b}. Find the value of $\cos \theta$.

Solution

The inner product of $\vec{a}=(1,1)$ and $\vec{b}=(-1,0)$ is $\vec{a} \cdot \vec{b}=1 \times(-1)+1 \times 0=-1$. Since $|\vec{a}|=\sqrt{2},|\vec{b}|=1$, and $\vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$, we obtain: $\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}=\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$

$$
\text { Answer : } \quad \cos \theta=\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}
$$

4. A football team consisting of 6 boys and 5 girls will be formed from a group of 7 boys and 7 girls. Find how many different teams can be formed from the group.

Solution
${ }_{7} \mathrm{C}_{6} \times{ }_{7} \mathrm{C}_{5}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \times \frac{7 \times 6 \times 5 \times 4 \times 3}{5 \times 4 \times 3 \times 2 \times 1}=7 \times \frac{7 \times 6}{2}=147$.

