The Project for Human Resource Development Scholarship by Japanese Grant Aid (JDS)

Basic Mathematics Aptitude Test
 2021

Note:

-The test is a computer-scored multiple-choice test.

- You have 60 minutes to complete.
- No calculators are allowed.
- Part I and II are 'Basic Math,' and Part III, IV and V are 'Applied Math.'
- Select one(1) integer 0 to 9 for each square.
- Each square correspond to each answer number of computer-scored answer sheet.

Example:

Please select integer number that correspond to A and B . $(\mathrm{A}=$ No.1, $\mathrm{B}=\mathrm{No.2})$

Fill the oval shape completely by a pencil that you think it is the appropriate answer as shown in the picture below.

Name:
[PART I] Calculate the followings.

Please select integer number that correspond to A and B . $(\mathrm{A}=\mathrm{No} .1, ~ \mathrm{~B}=\mathrm{No} .2)$

(2 digits)

Please select integer number that correspond to A and B . $(\mathrm{A}=\mathrm{No} .3, ~ \mathrm{~B}=\mathrm{No} .4)$

$$
>\left(\frac{1}{2} \div \frac{1}{3}-\frac{2}{3}\right) \times\left(\frac{1}{2} \div \frac{1}{3}+\frac{2}{3}\right)=\frac{65}{\frac{A}{(2 \text { digits })}}
$$

Please select integer number that correspond to A and B. (A=No.5, B=No.6)
$>(\sqrt{5}+2)^{2}=\square+4 \sqrt{\square}$

Please select integer number that correspond to A, B and C .
($\mathrm{A}=\mathrm{No} .7, \mathrm{~B}=\mathrm{No} .8, ~ \mathrm{C}=\mathrm{No} .9$)

$$
>\quad\left(\left(\frac{1}{2}\right)^{-2.5} \times\left(\frac{1}{4}\right)^{0.25}\right)^{-4}=\frac{1}{\square \mathrm{~A} \sqrt{(3 \text { digits) })}}
$$

[PART II] Answer the following questions.

Please select integer number that correspond to \square (No.10)
$>$ Solve the following equation for x .

$$
2=\frac{5 x-1}{x+2}
$$

Please select integer number that correspond to a and b . $(\mathrm{a}=$ No.11, $\mathrm{b}=\mathrm{No.12})$
$>$ Solve the following simultaneous equations for a and b .

$$
\begin{aligned}
& a+b=16 \\
& a b=64
\end{aligned}
$$

$$
\text { Answer : } \quad \mathrm{a}=\square, \mathrm{b}=\square
$$

Please select integer number that correspond to A and $\mathrm{B} .(\mathrm{A}=\mathrm{No} .13, ~ \mathrm{~B}=\mathrm{No.14})$
$>$ Find the region of x satisfying the following inequality.
$|\mathrm{x}| \leq x^{2}$
Answer : $\mathrm{x} \leq-\square \mathrm{A}, \quad \mathrm{B} \leq \mathrm{x}$

Please select integer number that correspond to a. (No.15)
$>$ Consider the straight line in the (x, y) -plane that passes through the point $(\mathrm{a}+1, \mathrm{a})$. Assume that the slope is -1 and the x-intercept is $(5,0)$. Find the value of a.

Answer :
$\mathrm{a}=$
[PART III] Answer the following questions:

Please select integer number that correspond to A and B . ($\mathrm{A}=$ No.16, $\mathrm{B}=\mathrm{No.17)}$
$>$ Find the region of x satisfying the following inequality.

$$
2^{x^{2}}<2^{64}
$$

Answer : $\quad-\quad \mathrm{A}<\mathrm{x}<\square \mathrm{B}$

Please select integer number that correspond to x . (No.18)
$>$ Solve the following equation for x .

$$
\log _{10}(x)-\log _{10}\left(\frac{1}{x}\right)=\log _{10}(10-3 x)
$$

Answer : $\quad \mathrm{x}=\square$

Please select integer number that correspond to A and $\mathrm{B} .(\mathrm{A}=\mathrm{No} .19, ~ \mathrm{~B}=\mathrm{No} .20)$
$>$ Consider a sequence series $\left\{x_{k}\right\}_{k=1}^{\infty}$ with $x_{k}=2 k-1$. Consider the series $S_{n}=$ $\sum_{k=1}^{n} x_{k}$. Find the smallest integer of n satisfying $S_{n}>120$.

Please select integer number that correspond to \square (No.21)
> Consider the following five values,

$$
\{-2,5,-1,3,-5\} .
$$

Let x and y be the average and median of these five values, respectively. Find the value of $\log _{10}(x-y)$.
[PART IV] Answer the following questions:
Please select integer number that correspond to A and B . ($\mathrm{A}=\mathrm{No} .22, ~ \mathrm{~B}=\mathrm{No} .23$)
$>$ Determine the second-order derivative of the following. Assume $\mathrm{x}>0$. Note that e is a mathematical constant which is the base of the natural logarithm.
$\mathrm{y}=\int_{0}^{\mathrm{x}}(2 z) \mathrm{dz}-\log _{e}\left(\mathrm{x}^{3}\right)$

Answer : $\quad y^{\prime \prime}=\mathrm{A}+\frac{\mathrm{B}}{x^{2}}$

Please select integer number that correspond to A and B . ($\mathrm{A}=\mathrm{No} .24, ~ \mathrm{~B}=\mathrm{No} .25$)
$>$ Assume that $\mathrm{b}>1$. Find the following value.

$$
\lim _{n \rightarrow \infty} \frac{2 b^{n}}{10+3 b^{n}}
$$

Please select integer number that correspond to X and Y .
($\mathrm{X}=$ No.26, Y=No.27, $\mathrm{Z}=\mathrm{No.28)}$
$>$ Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & \mathrm{a}\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Assume that the determinant of A is 2 . Find $A^{-1} B$.

Please select integer number that correspond to x and $\mathrm{y} .(\mathrm{x}=\mathrm{No} .29$, $\mathrm{y}=\mathrm{No} .30$)
$>$ Find the values of x and y that solve the following constrained maximization problem:
Maximize $\sqrt{x y}$ subject to $x+y=10$.
Answer : $\mathrm{x}=\square, \quad \mathrm{y}=\square$
[PART V] Fill in the following blanks with correct answers.

Please select integer number that correspond to \square. (No.31)
$>$ Find the first derivative of the following.

$$
f(x)=\sin \left(x^{2}\right)
$$

Answer : $\quad \square \mathrm{x} \cos \left(\mathrm{x}^{2}\right)$

Please select integer number that correspond to \square (No. 32)
> A continuous random variable follows the following probability density function f . Find the value of a positive constant b.

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\mathrm{b} & \text { if } 0 \leq \mathrm{x} \leq 0.5 \\ 0 & \text { otherwise }\end{cases}
$$

\qquad

Please select integer number that correspond to A and B . ($\mathrm{A}=\mathrm{No} .33, ~ \mathrm{~B}=\mathrm{No} .34$)
$>$ Suppose that $\overrightarrow{\mathrm{a}}=(2 \mathrm{x},-1)$ and $\overrightarrow{\mathrm{b}}=(\mathrm{x}, 32)$ are vertical. Find the value of x .
Answer : $\quad \mathrm{x}=-\mathrm{A}, \quad \mathrm{B}$

Please select integer number that correspond to A, B and C .
($\mathrm{A}=$ No.35, $\mathrm{B}=$ No.36, $\mathrm{C}=$ No.37)
$>$ A baseball team consisting of 5 boys and 4 girls will be formed from a group of 6 boys and 7 girls. Find how many different teams can be formed from the group.

(3 digits)

