The Project for Human Resource Development Scholarship by Japanese Grant Aid (JDS)

Basic Mathematics Aptitude Test

2021

Solution

Note:
-The test is a computer-scored multiple-choice test.

- You have 60 minutes to complete.
- No calculators are allowed.
- Part I and II are 'Basic Math,' and Part III, IV and V are 'Applied Math.'
- Select one(1) integer 0 to 9 for each square.
- Each square correspond to each answer number of computer-scored answer sheet.

Name:
(Please show all your work here and write your answers in the designated space)
[PART I] Calculate the followings.
$>(-3) \times(1-3) \times(12-3)$
$=(-3) \times(-2) \times 9=54$
$>\quad\left(\frac{1}{2} \div \frac{1}{3}-\frac{2}{3}\right) \times\left(\frac{1}{2} \div \frac{1}{3}+\frac{2}{3}\right)$
$=\left(\frac{3}{2}-\frac{2}{3}\right) \times\left(\frac{3}{2}+\frac{2}{3}\right)=\frac{9}{4}-\frac{4}{9}=\frac{81-16}{36}=\frac{65}{36}$

Answer : $\quad \frac{65}{36}$

$>(\sqrt{5}+2)^{2}$
$=5+4 \sqrt{5}+4=9+4 \sqrt{5}$
$>\quad\left(\left(\frac{1}{2}\right)^{-2.5} \times\left(\frac{1}{4}\right)^{0.25}\right)^{-4}$
$=\left(2^{2.5} \times 2^{-0.5}\right)^{-4}=\left(2^{2}\right)^{-4}=2^{-8}=\frac{1}{256}$
(Please show all your work here and write your answers in the designated space)
[PART II] Answer the following questions.
$>$ Solve the following equation for x .

$$
\begin{aligned}
2 & =\frac{5 x-1}{x+2} \\
2 x+4 & =5 x-1 \rightarrow 3 x=5 \rightarrow x=\frac{5}{3}
\end{aligned}
$$

$$
\text { Answer : } \quad x=\frac{5}{3}
$$

> Solve the following simultaneous equations for a and b .

$$
\begin{aligned}
& a+b=16 \\
& a b=64
\end{aligned}
$$

$\mathrm{a}=8, \mathrm{~b}=8$

$$
\text { Answer : } \quad a=8, b=8
$$

> Find the region of x satisfying the following inequality.

$$
\begin{aligned}
&|\mathrm{x}| \leq x^{2} \\
& \mathrm{x}<0 \rightarrow-x \leq x^{2} \rightarrow x \leq-1 \\
& \mathrm{x} \geq 0 \rightarrow x \leq x^{2} \rightarrow 1 \leq x
\end{aligned}
$$

$$
\text { Answer : } \quad x \leq-1,1 \leq x
$$

> Consider the straight line in the (x, y) -plane that passes through the point $(a+1$, a). Assume that the slope is -1 and the x-intercept is (5,0). Find the value of a.

The slope is -1 , and the x-intercept is 5 . Thus, we can write $y=-x+5$. Since the line passes through $(a+1, a)$, we have $a=2$.
(Please show all your work here and write your answers in the designated space)
[PART III] Answer the following questions:
> Find the region of x satisfying the following inequality.

$$
\begin{gathered}
2^{x^{2}}<2^{64} \\
x^{2}<64 \rightarrow-8<x<8
\end{gathered}
$$

$>$ Solve the following equation for x .

$$
\begin{aligned}
& \qquad \log _{10}(x)-\log _{10}\left(\frac{1}{x}\right)=\log _{10}(10-3 x) \\
& x^{2}+3 x-10=(x+5)(x-2)=0 \rightarrow x=-5,2 \\
& \text { Since } x>0, \text { we have } x=2
\end{aligned}
$$

$>$ Consider a sequence series $\left\{x_{k}\right\}_{k=1}^{\infty}$ with $x_{k}=2 k-1$. Consider the series $S_{n}=\sum_{k=1}^{n} x_{k}$. Find the smallest integer of n satisfying $S_{n}>120$.
$S_{n}=2 \times \frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}=n^{2}>120 \rightarrow$ the smallest $\mathrm{n}=11$
Answer : 11
$>$ Consider the following five values,

$$
\{-2,5,-1,3,-5\} .
$$

Let x and y be the average and median of these five values, respectively. Find the value of $\log _{10}(x-y)$.
$x=0, y=-1 \rightarrow x-y=1 \rightarrow \log _{10}(x-y)=0$
(Please show all your work here and write your answers in the designated space)
[PART IV] Answer the following questions:
$>$ Determine the second-order derivative of the following. Assume $\mathrm{x}>0$. Note that e is a mathematical constant which is the base of the natural logarithm.

$$
\mathrm{y}=\int_{0}^{\mathrm{x}}(2 z) \mathrm{dz}-\log _{e}\left(\mathrm{x}^{3}\right)
$$

$$
\mathrm{y}^{\prime}=2 x-\frac{3}{x} \rightarrow \mathrm{y}^{\prime \prime}=2+\frac{3}{x^{2}}
$$

$$
\text { Answer : } y^{\prime \prime}=2+\frac{3}{x^{2}}
$$

$>$ Assume that $\mathrm{b}>1$. Find the following value.

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{~b}^{\mathrm{n}}}{10+3 \mathrm{~b}^{n}} \\
\frac{2 \mathrm{~b}^{\mathrm{n}}}{10+3 \mathrm{~b}^{n}}= & \frac{2}{10 / \mathrm{b}^{\mathrm{n}}+3} \rightarrow \frac{2}{3} .
\end{aligned}
$$

Answer : $\frac{2}{3}$
$>$ Let $A=\left[\begin{array}{cc}1 & 1 \\ -2 & \mathrm{a}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Assume that the determinant of A is 2 . Find $\mathrm{A}^{-1} \mathrm{~B}$.

$$
\begin{aligned}
& \operatorname{det}(\mathrm{A})=\mathrm{a}+2=2 \rightarrow \mathrm{a}=0 \\
& \mathrm{~A}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
0 & -1 \\
2 & 1
\end{array}\right] \rightarrow \mathrm{A}^{-1} \mathrm{~B}=\frac{1}{2}\left[\begin{array}{cc}
0 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

Find the values of x and y that solve the following constrained maximization problem:
Maximize $\sqrt{\mathrm{xy}}$ subject to $\mathrm{x}+\mathrm{y}=10$.

$$
y=10-x \rightarrow \sqrt{x y}=\sqrt{x(10-x)}=\sqrt{10 x-x^{2}} \rightarrow 10-2 x=0 \rightarrow x=5 .
$$

[PART V] Fill in the following blanks with correct answers.
$>$ Find the first derivative of the following.

$$
f(x)=\sin \left(x^{2}\right)
$$

Solution

$f^{\prime}(x)=\cos \left(x^{2}\right) \times(2 x)=2 x \cos \left(x^{2}\right)$.

$$
\text { Answer : } \quad 2 x \cos \left(x^{2}\right)
$$

$>$ A continuous random variable follows the following probability density function f. Find the value of a positive constant b.

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\mathrm{b} & \text { if } 0 \leq \mathrm{x} \leq 0.5 \\ 0 & \text { otherwise }\end{cases}
$$

Solution

For f to be a probability density function, it must hold that $\int_{-\infty}^{\infty} f(x) \mathrm{dx}=1$.
$\int_{-\infty}^{\infty} f(x) \mathrm{dx}=\int_{0}^{0.5} b \mathrm{dx}=b \times 0.5=1 \rightarrow b=2$
$>$ Suppose that $\vec{a}=(2 x,-1)$ and $\vec{b}=(x, 32)$ are vertical. Find the value of x.

Solution

The inner product of $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ must be zero.
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=2 \mathrm{x} \times \mathrm{x}-1 \times 32=0 \rightarrow \mathrm{x}^{2}=16 \rightarrow \mathrm{x}=-4,4$

$$
\text { Answer : } \quad x=-4,4
$$

$>$ A baseball team consisting of 5 boys and 4 girls will be formed from a group of 6 boys and 7 girls. Find how many different teams can be formed from the group.

Solution

${ }_{6} \mathrm{C}_{5} \times{ }_{7} \mathrm{C}_{4}=\frac{6 \times 5 \times 4 \times 3 \times 2}{5 \times 4 \times 3 \times 2 \times 1} \times \frac{7 \times 6 \times 5 \times 4}{4 \times 3 \times 2 \times 1}=6 \times \frac{7 \times 6 \times 5}{3 \times 2 \times 1}=6 \times(7 \times 5)=210$.

