The Project for Human Resource Development Scholarship by Japanese Grant Aid (JDS)
 Basic Mathematics Aptitude Test
 2022

Solution

Note:

- You have 60 minutes to complete.
- No calculators are allowed.
- Show all your work and write your answers in the designated space.
- Part I and Part II are 'Basic Math,' and Part III and Part IV are 'Applied Math.'

Name:

【PART I】Calculate the followings.

1. $2-(2-2 \times(4+(2-6)))$

$$
=2-(2-2 \times(4+(-4)))=2-(2-2 \times 0)=2-2=0
$$

2. $\left(1+\frac{1}{3} \times \frac{3}{4} \div \frac{1}{4}\right)-\frac{2}{5} \times \frac{10}{4}$

$$
=\left(1+\frac{1}{3} \times \frac{3}{4} \times \frac{4}{1}\right)-\frac{1}{1} \times \frac{2}{2}=(1+1)-1=1
$$

Answer : 1
3. $(\sqrt{3}-\sqrt{7}) \times(\sqrt{3}+\sqrt{7})$

$$
=3-7=-4
$$

4. $\left(2^{-2} \times\left(\frac{1}{2}\right)^{-2}\right)^{-4} \div\left(\frac{1}{3}\right)^{2}$

$$
=\left(\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{2}\right)^{-2}\right)^{-4} \times\left(\frac{1}{3}\right)^{-2}=\left(\left(\frac{1}{2}\right)^{2-2}\right)^{-4} \times 3^{2}=1 \times 3^{2}=9
$$

【PART II】 Answer the following questions.

1. Solve the following equation for x.

$$
\begin{aligned}
\left(\frac{10-x}{3}\right) & =3 x \\
10-x & =9 x \rightarrow 10=10 x \rightarrow x=1
\end{aligned}
$$

$$
\text { Answer : } \quad x=1
$$

2. Solve the following simultaneous equations for x and y.

$$
\begin{aligned}
& -x+6 y=19 \\
& -x+2 y=7
\end{aligned}
$$

$$
\text { Answer : } \quad x=-1, \quad y=3
$$

3. Find the region x satisfying the following inequality, where \| indicates the absolute value.

$$
\begin{aligned}
|x+3| & <2 \\
-2 & <(x+3)<2 \rightarrow-2-3<x<2-3 \rightarrow-5<x<-1
\end{aligned}
$$

$$
\text { Answer : } \quad-5<x<-1
$$

4. Solve the following.

$$
\begin{aligned}
& \sum_{n=1}^{5}(2 n-1) \\
& \quad \sum_{n=1}^{5}(2 n-1)=2 \times \frac{5(5+1)}{2}-5=30-5=25
\end{aligned}
$$

[PART III] Answer the following questions.

1. Solve the following equation for x.

$$
\begin{aligned}
& \frac{x^{2}}{4}=4 \\
& x^{2}=16 \rightarrow x^{2}=(\pm 4)^{2} \rightarrow x=4,-4
\end{aligned}
$$

$$
\text { Answer : } \quad x=4,-4
$$

2. Find the region of x satisfying the following inequality.

$$
\begin{aligned}
& x^{2}<4 x-3 \\
& \quad x^{2}-4 x+3<0 \rightarrow(x-3)(x-1)<0 \rightarrow 1<x<3 \\
& \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{4^{2}-4 \times 1 \times 3}}{2 \times 1}=\frac{4 \pm \sqrt{16-12}}{2 \times 1}=1,3 \rightarrow 1<x<3
\end{aligned}
$$

Answer: $\quad 1<x<3$
3. Solve the following equation for x.

$$
\begin{aligned}
& \log _{10}(x)=\log _{10}(2 x-4) \\
& \quad \log _{10}(x)=\log _{10}(2 x-4) \rightarrow x=2 x-4 \rightarrow-x=-4 \rightarrow x=4
\end{aligned}
$$

Answer: $\quad x=4$
4. Consider the following five values, $\{1,2,7,6,4\}$. Suppose that the average of these five values is $\log _{2}(x)$. Find the value of x.

$$
\frac{(1+2+7+6+4)}{5}=4=\log _{2}(x) \rightarrow \log _{2}(x)=4 \rightarrow x=2^{4}=16
$$

【PART IV】 Answer the following questions.

1. Determine the first-order derivative of the following. Note that e is a mathematical constant which is the base of the natural logarithm.

$$
y=2 x^{2}+e^{x}+\log _{e} x+5
$$

$$
\text { Answer : } y^{\prime}=4 x+e^{x}+\frac{1}{x}
$$

2. Find the following definite integral. $\int_{-1}^{0} 2 x d x$

$$
\left.\int_{-1}^{0} 2 x d x=2 \times \frac{x^{2}}{2}\right]_{-1}^{0}=0-1=-1
$$

Answer : -1
3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right]$. Find the inverse matrix of A.
$\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right] \rightarrow \operatorname{det}(A)=2$ where $\operatorname{det}(\mathrm{A})$ is the determinant of the matrix A.
$A^{-1}=\frac{1}{4 \times 1-2 \times 1}\left[\begin{array}{cc}4 & -2 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -0.5 & 0.5\end{array}\right]$

4. The profit π is described by the following function: $\pi(q)=(200-2 q) q-0.5 q^{2}$, where q is output. Find the output q at which the profit is maximized.

Solution: the first-odder condition is : $\pi^{\prime(q)}=200-4 q-q=0 \rightarrow \mathrm{q}=40$

$$
\text { Answer : } \quad q=40
$$

【PART V】 Answer the following questions.

1. Find the first derivative of the following. $f(\theta)=(\sin \theta)^{2}+(\cos \theta)^{2}$

Solution

$: f(\theta)=(\sin \theta)^{2}+(\cos \theta)^{2} \rightarrow f^{\prime}(\theta)=2(\sin \theta)(\cos \theta)+2(\cos \theta)(-\sin \theta)=0$ or 0 .
2. Conduct a sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$ with $a_{k}=r^{1-k}$. Find the value r which satisfies $\sum_{k=1}^{\infty} a_{k}=4$

Solution: $\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} r^{1-k}=\frac{1}{1-1 / r}=\frac{r}{r-1}=4 \rightarrow \mathrm{r}=4(r-1)=4 r-4 \rightarrow \mathrm{r}=\frac{4}{3}$

$$
\text { Answer : } \quad r=\frac{4}{3}
$$

3. Suppose that $\vec{a}=(x-4,-1)$ and $\vec{b}=(x,-4)$ are vertical. Find x.

Solution: The inner product $\vec{a} \cdot \vec{b}$ must be zero, given the angle of two vectors is 90 degree (so-called orthogonal). $\vec{a} \cdot \vec{b}=x \times(x-4)+1 \times 4=x^{2}-4 x+4=0$

Thus, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{(-4)^{2}-4 \times 1 \times 4}}{2 \times 1}=\frac{4 \pm \sqrt{0}}{2 \times 1}=2$

$$
\text { Answer : } \quad x=2
$$

4. There are 6 male and 5 female students in the program. A group consisting of 3 male and 2 female students will be formed to work on a group project. Find how many different groups can be formed.

Solution: $6 \mathrm{C} 3 \times 5 \mathrm{C} 2=\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \times \frac{5 \times 4}{2 \times 1}=20 \times 10=200$

