

The Project for Human Resource Development
Scholarship (JDS)

Basic Mathematics Aptitude Test
2024

Solution

解答に至るための途中式は黄色のハイライト箇所です。
Part3-2 の問題は途中式が 2 パターンあります。

(Please show all your work here and write your answers in the designated space)

[PART I] Calculate the followings.

1. $2 - (2 - 4 \times (3 + (4 - 7)))$

Solution: $2 - (2 - 4 \times (3 - 3)) = 2 - (2 - 4 \times 0) = 2 - 2 = 0$

Answer : 0

2. $\left(\frac{3}{2} - \frac{1}{2} \div \frac{1}{3}\right) \times \left(\frac{3}{8} \div \frac{3}{16} - \frac{3}{16}\right)$

Solution: $\left(\frac{3}{2} - \frac{1}{2} \div \frac{1}{3}\right) \times \left(\frac{3}{8} \div \frac{3}{16} - \frac{3}{16}\right) = \left(\frac{3}{2} - \frac{1}{2} \times \frac{3}{1}\right) \times \left(\frac{3}{8} \times \frac{16}{3} - \frac{3}{16}\right) =$
 $\left(\frac{3}{2} - \frac{3}{2}\right) \times \left(\frac{16}{8} - \frac{3}{16}\right) = 0 \times \frac{29}{16} = 0$

Answer : 0

$$3. (\sqrt{48} - \sqrt{75}) \times \sqrt{3}$$

Solution: $(\sqrt{48} - \sqrt{75}) \times \sqrt{3} = (4\sqrt{3} - 5\sqrt{3}) \times \sqrt{3} = (-\sqrt{3}) \times \sqrt{3} = -3$

Answer : -3

$$4. \left(3^3 \times \left(\frac{1}{3}\right)^3\right)^2 \div \left(\frac{1}{3}\right)^{-3}$$

Solution: $\left(3^3 \times \left(\frac{1}{3}\right)^3\right)^2 \div \left(\frac{1}{3}\right)^{-3} = (3^3 \times 3^{-3})^2 \div (3^{-1})^{-3} = (3^{3-3})^2 \div 3^3 = 1 \div 3^3 = \frac{1}{27}$
or 3^{-3}

Answer : $\frac{1}{27}$ or 3^{-3}

(Please show all your work here and write your answers in the designated space)
[PART II] Answer the following questions.

1. Solve the following equations: $4x+2=6x-6$

Solution: $4x - 6x = -2 - 6 \rightarrow -2x = -8, \quad x = 4$

Answer : 4

2. Solve the following simultaneous equations for x and y .

$$\begin{aligned}3x + 2y - 1 &= 7 \\-x + 5y &= 3\end{aligned}$$

Solution: $3x + 2y = 8, \quad -x + 5y = 3 \rightarrow a: 3x + 2y = 8, \quad b: -3x + 15y = 9$
If $a + b = 17y = 17, y = 1. \quad -x + 5 = 3 \rightarrow -x = -2$

Answer: $x = 2, y = 1$

3. Find the region x satisfying the following inequality, where $||$ indicates the absolute value.

$$\left| \frac{2x+3}{4} \right| < 2$$

Solution: $-2 < \frac{2x+3}{4} < 2 \rightarrow -8 < 2x + 3 < 8 \rightarrow -8-3 < 2x < 8-3 \rightarrow -11 < 2x < 5$

$$\text{Answer : } -\frac{11}{2} < x < \frac{5}{2} \text{ or } -5.5 < x < 2.5 \text{ or } -5\frac{1}{2} < x < 2\frac{1}{2}$$

4. Find the difference between the arithmetic mean and median values in the following observations x_i : $\text{Mean}(x_i) - \text{Median}(x_i)$ where $x_i = \{22, 4, 8, 5, 11, 10\}$.

Solution: Arrange x_i in ascending order as $x_i = \{22, 4, 8, 5, 11, 10\} = \{4, 5, 8, 10, 11, 22\}$. Given six even elements, the median is the average of the two middle values of 8 and 10 and is equal to 9.

$$\text{Mean}(x_i) = \frac{4+5+8+10+11+22}{6} = \frac{60}{6} = 10, \text{ Median}(x_i) = \frac{8+10}{2} = 9 \rightarrow \text{Mean}(x_i) - \text{Median}(x_i) = 10 - 9 = 1$$

Answer : 1

(Please show all your work here and write your answers in the designated space)
[PART III] Answer the following questions:

1. Solve the following equation for x . Consider only real number solutions.

$$\frac{5x^3}{2} - 7 = 13$$

Solution: $5x^3 = 20 \times 2 \rightarrow x^3 = 8 = 2^3 \rightarrow x = 2$

Answer : $x = 2$

2. Find the region of x satisfying the following inequality.

$$x^2 - 4x < x - 6$$

Solution: Both factoring and the quadratic formula can be applied to arrive at the solutions:

① $x^2 - 5x + 6 < 0 \rightarrow (x - 2)(x - 3) < 0 \rightarrow$ Answer: $2 < x < 3$

② $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 1 \times 6}}{2 \times 1} = \frac{5 \pm \sqrt{25 - 24}}{2 \times 1} = \frac{5 \pm 1}{2 \times 1} = 2, 3 \rightarrow$ Answer: $2 < x < 3$

11月22日補記 :

以下の回答も正解なのではという問い合わせあり。

試験作成者（片岡先生）へ確認の上、「不等号の問題で範囲を求めているので、正確には正解ではない=不正解(0点)」という整理とした。

- ① (2 ; 3)
- ② $x_1=2, x_2=3$
- ③ $(x-2)(x-3)$
- ④ $x_1=3, x_2=2$

Answer : $2 < x < 3$

3. Solve the following equation for x .

$$2\log_3(x) = \log_3(2) + \log_3(3x - 4)$$

Solution: $2\log_3(x) = \log_3(2) + \log_3(3x - 4) \rightarrow \log_3(x^2) = \log_3(2 \times (3x - 4)) \rightarrow x^2 = 2 \times (3x - 4) \rightarrow x^2 - 6x + 8 = (x - 2) \times (x - 4) = 0$

Answer : $x = 2, 4$

4. Consider the following six values, [6, 4, 12, 8, 10, 14]. Suppose that the median of six values is 3^{2x} . Find the value of x .

Solution: To find the median (M) from a set of values, follow these steps:

Step 1: Arrange in ascending order: 4, 6, 8, 10, 12, 14

Step 2: Given 6 even elements, the median (M) is the average of the two middle values of 8 and 10.

$$\text{Median (M)} = (8 + 10) / 2 = 9$$

$$9 = 3^{2x} = 3^2 \rightarrow 2x = 2, x = 1$$

Answer : $x = 1$

(Please show all your work here and write your answers in the designated space)

[PART IV] Answer the following questions:

1. Determine the first-order derivative of the following. Note that log is the natural logarithm.

$$y = \log(x^2 + 4)$$

Solution: We use the chain rule, which states that if you have a composite function $y=f(g(x))$, In this case,

$$f = \log(\cdot) \text{ and } g = (x^2 + 4) \quad y' = f'(g(x)) \cdot g'(x) = \frac{1}{(x^2+4)} \cdot 2x = \frac{2x}{(x^2+4)}$$

Answer : $\frac{2x}{(x^2 + 4)}$

2. Find the following definite integral.

$$\int_1^2 (2x + 3x^2) dx$$

Solution: $\int_1^2 (2x + 3x^2) dx = \left(2 \times \frac{1}{2}x^2\right) + \left(3 \times \frac{1}{3}x^3\right) \Big|_1^2 = (4 + 8) - (1 + 1) = 10$

Answer : 10

3. Let $A = \begin{bmatrix} 1 & 1 \\ -2 & a \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$.

Assume determinant of the matrix A is 5. Find $A^{-1} \times B$.

Solution: The determinant of the matrix, denoted as $\det(A) = 1 \times a - (-2 \times -1) = 1$. $\rightarrow a=3$

$$A^{-1} = \frac{1}{5} \times \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.2 \\ 0.4 & 0.2 \end{bmatrix}. A^{-1}B = \begin{bmatrix} 0.6 & -0.2 \\ 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.2 \\ 0.8 & 0.8 \end{bmatrix}$$

Answer : $\begin{bmatrix} 0.2 & 0.2 \\ 0.8 & 0.8 \end{bmatrix}$ or $\begin{bmatrix} 1/5 & 1/5 \\ 4/5 & 4/5 \end{bmatrix}$

4. Find the maximum total revenue (TR) for a firm, given the flowing functions: $TR = P \times Q$ and $P = 16 - 2Q$, where P and Q are the price and quantity of goods, respectively.

Solution: $TR = P \times Q = (16 - 2Q) \times Q = 16Q - 2Q^2$.

To find the maximum value, the first derivative of TR with respect to Q is equal to zero. In Maximization $TR' = -4Q + 16 = 0 \rightarrow Q = 4$. Thus, the maximum TR is $Max(TR) = 16Q - 2Q^2 = 16 \times 4 - 2 \times 4^2 = 32$ where P=8.

Answer : 32

(Please show all your work here and write your answers in the designated space)
[PART V] Answer the following questions:

1. Find the following trigonometric function value: $\sin\left(\pi - \frac{5\pi}{6}\right) + \cos\left(\frac{\pi}{3}\right)$ where π represents the mathematical constant and the angles are in radians.

Solution: At first, we simplify the expression inside the sine function of the first term. $\pi - \frac{5\pi}{6} = \frac{\pi}{6}$. $\sin\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} + \frac{1}{2} = 1$

Answer : 1

2. Given a sequence $\left(\frac{1}{3}\right)^{n-1}$, find $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1}$ where n is an integer.

Solution: Use $\sum_{n=1}^{\infty} ak^{n-1} = \left(\frac{a}{1-k}\right)$ where a and k are first term of the geometric sequence and common ratio, respectively. Substituting $a=1$ and $k = \left(\frac{1}{3}\right)$, we have $\frac{1}{1-\frac{1}{3}} = \frac{3}{2}$

Answer : $\frac{3}{2}$ or 1.5 or $1\frac{1}{2}$

3. Suppose that $\vec{a} = (4x - 5, 2)$ and $\vec{b} = (3, y)$ are vertical and that $x - y = 3$. Find x and y .

Solution: The inner product $\vec{a} \cdot \vec{b}$ must be zero, given the angle of two vectors is 90 degree (so-called orthogonal). $\vec{a} \cdot \vec{b} = 3 \times (4x - 5) + 2y = 12x + 2y - 15 = 0$ So, we solve the simultaneous equations of $12x + 2y - 15 = 0$ and $x - y = 3$.

Thus, $x = \frac{3}{2}$, $y = -\frac{3}{2}$.

Answer : $x = \frac{3}{2}$, $y = -\frac{3}{2}$ or $x = 1\frac{1}{2}$, $y = -1\frac{1}{2}$ or $x = 1.5$, $y = -1.5$

4. In the Econometrics course, there are 5 Japanese students and 7 non-Japanese students. The professor plans to form a group for assignment, by selecting two members from each group. Find the total number of different teams that can be formed.

Solution: ${}^5C_2 \times {}^7C_2 = \frac{5 \times 4}{2 \times 1} \times \frac{7 \times 6}{2 \times 1} = 10 \times 21 = 210$

Answer : 210
